Week 7 Assignments
Week 7: Scope and Classes
Instructions
Complete the following assignments. Copy and paste your finished code into a Word document, clearly identifying which assignment it is. Also, capture the output of the program and paste that into the Word document. If there are questions to be answered, put the answers after the output. When you complete all three of this week’s assignments, save the document as yourLastName_GSP115_W7_Assignments.docx. Submit to the Week 7 assignment Dropbox.
1. Debugging Challenge
You should be busy designing and writing your expansion to the Course Project, so this week’s assignment will be a debugging challenge. We have revised the slot machine code to make the payouts easier to change, but a lot of bugs were created in the process—both compile time and run-time bugs. Your job is to get the code running correctly. As before, the code may look like it’s working but could still have the occasional bug that only rarely shows up. You will only be held responsible for bugs that cause a problem that can be detected. All other bugs will be declared as features or somebody else’s problem in honor of an age-old computer game development tradition.
Here are some clues.
· You shouldn’t see any blank symbols.
· There are only three bugs.
This version of the slot machine gets its payout table from a text file. The text file is a series of four numbers, such as 2, 2, 2, and 10. The first three are symbol numbers, and they match the enum numbers. In this case, 2 is Orange. The last number is the payout, so the set of numbers can be interpreted as Orange, Orange, Orange pays out 10. As a result, you can change the pay out by changing the table. However, to save space, payouts for the Cherry are hard coded in to the check4Win function. This was a short cut, but the Cherry payouts could have been set in the text file. In case you haven’t already figured it out, you will need to create the text file and put it in the same folder as your main.cpp file. Here is a copy of the text in the text file this program was tested with.
0 0 0 1 1 1 1 10 2 2 2 15 3 3 3 20 4 4 4 40 5 5 5 200 4 4 2 25 4 4 3 30
Here is the code.
// Week 7 Assignment-1
// Description:
//----------------------------------

//**begin #include files************
#include <iostream> // provides access to cin and cout
#include <iomanip>
#include <array>
#include <vector>
#include <sstream>
#include <fstream>
//--end of #include files-----------
//----------------------------------

using namespace std;
//----------------------------------

//**begin global constants**********
// number of positions on a reel (10)
const int reelPositions = 11;
// create enum for symbols
enum symbol
{
	Lemon, Cherry, Orange, Bell, Bar, Jackpot
};

// define a struct for slot machine wheel
struct Wheel
{
	array <string, reelPositions> symbols;
	array <symbol, reelPositions> eSymbols;
	int position;
	string selected;
};//--end of global constants---------
//----------------------------------

//**begin function prototypes*******
void loadWinSheet(vector <array <int,4> > &);
int check4Win(vector <int>, vector <array <int,4> > &, int);
//void createSlotMachine(array <Wheel, 3> &);
//--end of function prototypes------
//----------------------------------

//**begin main program**************
int main()
{
	// seed random number generator
	srand(time(NULL));
	// create the payout table
	// define a vector for the payout table
	vector <array <int,4> > winSheet;
	loadWinSheet(winSheet);
	//create an array of three slot machine wheels
	array <Wheel, 3> slotMachine =
	{
		{
			{
				{"Orange", "Cherry", "Orange", "Lemon", "Orange", "Bar", "Lemon", "Bell", "Jackpot", "Bell"},
				{Orange, Cherry, Orange, Lemon, Orange, Bar, Lemon, Bell, Jackpot, Bell},
				0,"Orange"
			},
			{
				{"Bell", "Lemon", "Orange", "Bar", "Jackpot", "Bar", "Lemon", "Cherry", "Jackpot", "Bell"},
				{Bell, Lemon, Orange, Bar, Jackpot, Bar, Lemon, Cherry, Jackpot, Bell},
				1,"Lemon"
			},
			{
				{"Cherry", "Lemon", "Bar", "Lemon", "Orange", "Orange", "Lemon","Cherry", "Jackpot", "Bell"},
				{Cherry, Orange, Bar, Lemon, Orange, Orange, Lemon, Cherry, Jackpot, Bell},
				3,"Bar"
			}
		}
	};

	bool gameOn = true;
	int thePot = 100;
	bet = 1;
	bool winner = false;
	int winnings = 0;
	char checkKey ='\n';
	vector <int> combo;
	cout << "Hit 'enter' to bet. Hit 'space' and 'enter' to quit." << endl;
	while (gameOn)
	{
		for (auto &s: slotMachine)
		{
			s.position =(s.position + rand()%reelPositions)%reelPositions;
			s.selected = s.symbols[s.position];
			cout << setw(10) << left << s.selected.c_str() ;
			combo.push_back(s.eSymbols[s.position]);
		}
		winnings = check4Win(combo, winSheet, -bet);
		if (winnings > 0) cout << "You win " << winnings << "! ";
		thePot += winnings;
		cout << "You now have $" << thePot << endl;
		combo.clear();
		cout << endl;
		if (thePot <= 0) gameOn = false;
		cin.get(checkKey);
		if (checkKey != '\n') gameOn = false;
	}
	while (!cin.get()){};
	if (winner) cout << "You walk away a winner." << endl;
	else if (thePot > 0) cout << "Good bye." << endl;
	else cout << "You have lost all your money." << endl;
	// Wait for user input to close program when debugging.
	cin.get();
	return 0;
}
//--end of main program-------------
//----------------------------------

//**begin function definitions******
// loads the pattern payout table from a text file
void loadWinSheet(vector <array <int,4> > &pT)
{
	stringstream myStream;
	ifstream inFile;
	string myString;
	array <int, 4> combo;
	int pay;
	inFile.open("paytable.txt");
	if (inFile.is_open())
	{
		while (getline (inFile,myString))
		{
			myStream << myString;
		}
		inFile.close();
	}
	while (!myStream.eof())
	{
		myStream >> combo[0] >> combo[1] >> combo[2] >> combo[3];
		pT.push_back(combo);

	}
	return;
}
// Check for winning patterns
int check4Win(vector <int> pattern, vector <array <int,4> > &pT, int theBet)
{
	for(auto p: pT)
	{
		if (((pattern[0] == p[0]) && (pattern[1] == p[1])) && (pattern[2] == p[2])) return p[3];
		if ((pattern[1] == Cherry) && (pattern[2] == Cherry)) return 3;
		if (pattern[2] == Cherry) return 1;
	}
	return -theBet;
}
//--end of function definitions------
[bookmark: _GoBack]//----------------------------------
